Skip to content

Approach and ILS Landing

This guide will explain the correct procedures to fly a final approach and conduct an ILS landing.

Disclaimer

The level of detail in this guide is meant to get a FlyByWire A320neo beginner currently on approach to intercept the ILS and land the aircraft safely on the runway.

A beginner is defined as someone familiar with flying a GA aircraft or different types of airliners. Aviation terminology and know-how is a requirement to fly any airliner even in Microsoft Flight Simulator.

You will also find many great videos on YouTube on how to land the FlyByWire A32NX.
Check out the FlyByWire YouTube Channel as well: FlyByWire on YouTube


Prerequisites

Aircraft is on approach shortly before intercepting the ILS and is still in phase and state DES as per previous chapters.

Download FlyByWire Checklist

Chapters / Phases

This guide will cover these phases:

  1. Intercepting the ILS Localizer
  2. Intercepting the ILS Glideslope
  3. Preparation and Checklist for Landing
  4. Landing
  5. Vacate Runway

1. Intercepting the ILS Localizer

Situation:

  • Aircraft is in DES phase.
  • Aircraft is setup for flight <10,000ft (seat belt signs on, landing lights on, etc.).
  • We are within the IAP (Instrument Approach) and either:
    • at the altitude and speed from the chart (Final Approach Fix altitude and 250 knots if there are no other speed restrictions on the chart).
    • or we are at a heading vector, altitude and speed instructed by ATC.

At the end of the Instrument Approach (or by ATC vectoring) we will be on a path to the Final Approach Fix and/or a path to intercept the ILS localizer and eventually the ILS glideslope.

As a last instruction from ATC Approach we usually are instructed to contact Tower ATC when fully established on the ILS localizer.

To intercept the ILS Localizer we follow these steps:

  • Verify that the correct ILS frequency is tuned in the MCDU-RNAV page. We find the correct frequency on the approach chart.

    ILS frequency on approach chart

    ILS frequency on ECAM RNAV page

  • Turn on the ILS localizer and glideslope scales with the LS button on the glareshield if not already done before.

    LS button on glareshield

    ROSE LS Mode on PFD and ND

  • Make sure we are on the correct altitude (5,000ft in this example) and we should not have an approach angle larger than 30°.

    EDDM ILS 26R chart
    EDDM glideslope

  • Optional: Turn on ROSE LS Mode for the ND (can also be on F.O.'s side). The ROSE LS Mode shows the deviation from the localizer approach heading path.

    ND ROSE LS Mode

  • Activate the APPR phase in the MCDU-PERF page. This is usually automatically done by the aircraft at a certain point during the approach, but we make sure that at this point at the latest it is activated. In APPR phase the Autopilot together with "Managed Speed Mode" reliefs the pilot of a lot of stress by managing the speed according to flaps setting automatically (S-Speed after FLAPS 1, F-Speed after FLAPS 2, Vapp after landing flap selection).

    Activate APPR in ECAM PERF

  • Set SPEED to Managed Speed Mode (push the Speed Selector). The aircraft should now decelerate to green dot speed.

  • Set FLAPS to 1 at about VFE -15 knots (but never before speed is below VFE) for the first slat/flap configuration (CONF1). The aircraft will then decelerate further to prepare for the next flaps configuration. Our target is to be CONF 1 at S speed by the time you get to the glideslope intercept.

    VFE for next configuration

  • Turn on APPR in the FCU to command the aircraft to intercept the ILS localizer. The aircraft will keep the current heading until the localizer is captured and guides the aircraft towards the runway. The lateral ILS localizer scale shows the deviation marker moving towards the middle of the lateral deviation scale. Also the lateral FMA shows LOC in blue (armed).

    Activate LOC mode on FCU

    ILS lateral deviation marker moving inwards

Arming APPR

Using APPR also arms the glideslope descent (G/S) and the aircraft will descend as soon as it captures the ILS glideslope signal. Do not descend without ATC clearance and only when directly on the ILS localizer path as only then obstacle clearance is guaranteed. To help with this you can use the LOC button first (only localizer capture) and when cleared for approach press APPR

  • When we are established on the ILS localizer (the lateral FMA shows LOC in green) we will contact Tower ATC and report that we are established on the ILS localizer (including call sign and runway).

    Established on ILS localizer

Tower ATC will then give us clearance for ILS approach for the target runway. This clears us to descend on the ILS glideslope.

Do not descent without explicit clearance from ATC.

This concludes Intercepting the ILS Localizer


2. Intercepting the ILS Glideslope

Situation:

  • Aircraft is in APPR phase
  • Aircraft is established on ILS localizer
  • Configuration is CONF1 at S-Speed (FLAPS 1)

After ATC has given us clearance for ILS approach we can also start descending using the ILS glideslope.

PFD glideslope deviation marker

Check that the APPR button is activated on the FCU to arm the ILS glideslope descent mode.

The vertical FMA now shows G/S (glideslope) in blue.

PFD FMA showing G/S armed

This is a good time to set Flaps 2 (check that the speed is below the VFE for the next flap setting) as slowing down once we are descending along the glideslope can be difficult. We need the drag from the flaps if we do not want to let the gear down too early (which also would help us slowing down).
There is different guidance when to set FLAPS 2 but for beginners we recommend to go to FLAPS 2 before starting the glideslope descent. Airbus guidance for example is FLAPS 2 during glideslope descent at about 2,000ft.

ATC instructed approach speed

The A320 Autothrust will manage speed during approach automatically and will reduce speed further with each flap setting. In real live and also when flying with Online ATC like VATSIM we need to expect that ATC instructs us to stay at a certain speed (e.g. 160 knots until 5 NM to the runway). In this case we would use Selected Speed Mode (select a speed in the FCU and pull the knob) until the instructed distance to the runway where we would then go back to Managed Speed Mode and drop the gear then as well as setting flaps to 3 and flaps to full - see below.

The aircraft will start descending when the deviation marker is in the middle (we have captured the ILS glideslope). The vertical FMA will now display G/S in green.

PFD when G/S is activated

We are now descending along the glideslope. The radio altimeter comes alive at 2,500ft above the ground to display the actual precise height above ground.

Radio altimeter alive

This concludes Intercepting the ILS Glideslope


3. Preparation and Checklist for Landing

Situation:

  • Aircraft is established on ILS localizer and glideslope
  • Flaps are set to 2

At this point we would prepare the aircraft for a possible missed approach and go-around by setting the go-around altitude in the FCU (see MISSED APCH procedure in the charts). We skip this for this beginner guide.

To set us up for the final approach we do the following steps:

  • Gear down: Sometime between 2,500ft and 1,500ft , typically around 5-6NM from runway.
  • Turn on RWY TURN OFF lights and set NOSE light to T.O.
  • Set FLAPS 3 and shortly after FLAPS FULL (always check speed before setting flaps otherwise you might end up in an overspeed situation).
  • Going FLAPS FULL will reduce our speed to Vapp.
  • Arm Autobrakes (Low when dry, Med in rain or snow or a short runway).
  • Arm Speedbrake by pulling up the Speedbrake lever (Speedbrake must be retracted to arm).

We need to be fully setup and stable at 1,000ft above the ground.

Fully setup for landing

RWY TURN OFF ON and NOSE T.O

Cabin Crew

In real life the cabin crew will have been asked to prepare the cabin for landing during the descent. The exact moment and process might differ between airlines but most seem to do this when the Seatbelt Signs are turned on during descent (typically at the latest at 10,000ft).

The Cabin Crew will notify the pilots either by a "Cabin Ready" button (A320neo) or by a call to the cockpit (A320ceo) once they are ready and strapped-in themselves.

In the Microsoft Flight Simulator we simulate this by pressing the CALLS ALL button on the left of the overhead panel. This will set the "Cabin Ready" status as shown in the ECAM and there will be a short announcement playing "Cabin Crew take your seats for landing".

Cabin notification

Complete the Landing Checklist

Landing checklist

For the landing we have our hand on the thrust levers for a potential go-around so we can quickly push the levers forward into TO GA.
We do not move the levers until the last seconds before landing.

This concludes Preparation and Checklist for Landing


4. Landing

Situation:

  • Aircraft is fully setup for landing as per previous chapters.
  • Configuration is FLAPS FULL.
  • Aircraft is at about 1,000ft above the ground.
  • Wind is calm (no crosswind for this beginner guide).

Although the A320 can do an automatic landing (Autoland) we will do a manual landing as this is more common and also more fun.

We MUST get landing clearance from ATC before we actually are allowed to land. Without landing clearance we must do a go-around (not part of this beginner guide) before touching the runway. Usually ATC will have given us clearance at this point. Late clearance is rare and communicated to us beforehand.

Next we turn the Autopilot OFF at about 500ft above the ground by pressing the AP1 button on the FCU. We leave the Autothrust on so we don't have to worry about thrust and speed at all (Leaving Autothrust on for landing is common for the Airbus).

Cockpit view when AP has been turned off

Now look out at the PAPIs which guide us vertically down to the correct touchdown point. We want two white lights and 2 red lights.

PAPI indication correct path

See also Wikipedia:PAPI

We correct our pitch only very carefully when too high (3-4 white) or too low (3-4 red). We don't need a lot of input to the sidestick to correct.

We aim for the middle of the touchdown zone which is marked by the touchdown zone markers.

Runway touchdown zone

Also we try to aim for the center line of the runway in a way that it points directly under us.

Hold the runway center line pointing under us

Correct your final heading and bank very carefully. We should not need to correct much at this point.

Crosswind landings

Crosswind landings are beyond the scope of this beginner guide. There are many good tutorials for crosswind landings in the A320 on Youtube.

Once over the runway threshold we look towards the end of the runway to better judge our pitch especially for the so called Flare.

Flare

The flare follows the final approach phase and precedes the touchdown and roll-out phases of landing. In the flare, the nose of the plane is raised, slowing the descent rate and therefore, creating a softer touchdown, and the proper attitude is set for touchdown. [...] In the case of tricycle gear-equipped aircraft, the attitude is set to touchdown on the main (rear) landing gear. (source: Wikipedia: Landing flare)

At the runway threshold we should be about 50ft above ground and prepare to set the thrust levers to idle and flare.

Runway threshold

At about 30ft we start our flare by pulling back on the sidestick carefully. We only need a few degrees in positive pitch and hold the aircraft there. Too much flare will cause the aircraft to float down the runway, too little will cause a harder landing.

At about 10-20ft we pull back the thrust levers to idle (the aircraft also sounds the callout "retard retard ...") so the we are at idle thrust before we touch the ground.

PFD during flare

We hold the attitude of the aircraft until it settles on the ground. Do not push the sidestick forward (nose down) once flared. We let the aircraft settle to the runway while holding the pitch.

Practice this!!

On touchdown of the main gear the Speed Brakes will deploy automatically (we have armed them earlier) and we pull the thrust levers into the reverse position.

Reverse Thrust

We let the front gear settle gently on the runway (don't slam it down) and hold the center line of the runway while we are reducing speed. The speed reduction should be monitored on the PFD speed band and the speed trend arrow.

The Autobrakes should now have activated and started to further decelerate the aircraft. This can be checked by the Autobrake annunciators.

Speed trend arrow Autobrake annunciator

The upper ECAM should now show the engines in reverse mode (REV) and the lower ECAM shows the Speed Brakes (spoiler) deployed. Also you should notice that the brakes actually get hotter.

ECAM showing reverser and speed brakes

At about 60knots we put the thrust levers back to idle and at about 40 knots we release the Autobrakes by braking manually which deactivates the Autobrake.

This concludes Landing


5. Vacate Runway

Situation:

  • Aircraft has landed and is still on the center line of the runway.
  • Speed is < 40 knots.

We look for the next runway exit and slow down to about 15 knots before we start turning off the runway.

We continue rolling forward until we passed the runway entry marker with the full length of our aircraft.

Aircraft stopped after runway is vacated

We can now safely stop the aircraft and do our "After Landing" checklist.

If ATC did not already contact us on the ground we would contact them now to let them now we have vacated the runway. They will give us taxi instructions so we can continue taxiing to our gate once we have completed the after landing tasks.

After landing tasks in simulation

In real live the A320 will have two pilots which can actually do things in parallel. Talking to ATC, taxing the aircraft and do the after landing tasks. In the simulation we are typically alone so it is absolutely ok to stop once we have fully vacated the runway and do these things one after the other. Talking to ATC and getting taxi instruction, do the after landing tasks and checklist, taxiing to gate.

This concludes Vacate Runway

Continue with After Landing Steps


Last update: September 20, 2021
Back to top